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Renormalisation group calculations of the critical 
exponents of the n-vector model with a free surface? 

Jeffrey Reeve and A J Guttmann 
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia 

Received 7 April 1981 

Abstract. The correlation function critical exponents q and q1 of the semi-infinite d4 
model with O ( n )  symmetry have been calculated to order E' for the ordinary and special 
transitions. The results for the ordinary transition are inconsistent with the relation 
yI1 = Y - 1 proposed by Bray and Moore. Comparisons with series expansion results in two 
and three dimensions are presented for n = 0 and n = 1. 

1. Introduction 

For spin systems of the n-vector type with a free surface and positive extrapolation 
length A, two different classes of phase transition can be identified (Lubensky and Rubin 
1975a, b, Bray and Moore 1977a, b). (The extrapolation length is the distance beyond 
the free surface where the spin profile in the ordered phase would vanish if linearly 
extrapolated from the boundary.) When 0 < A  < CO the transition is referred to as the 
ordinary transition and when A-'  = 0 one speaks of the special transition. When A < 0, 
the surface orders at a higher temperature than that at which the bulk orders. Thus as 
the temperature is lowered, the surface orders first, corresponding to the surface 
transition, then, at the (lower) bulk critical temperature, the bulk orders under the 
influence of an ordered surface. This is called the extraordinary transition. We are only 
concerned here, however, with the case of positive extrapolation length. 

Let G(X, X ' )  be the correlation function for spins at si tesX and X' of a semi-infinite 
d-dimensional lattice. The d-dimensional vector X has components (p, 2) where p is a 
(d - 1)-dimensional vector parallel to the free surface at t = 0. Restricted translational 
invariance obtains, so that G(X, X') = G(r, z ,  z ' ) ,  where r = Ip -p'I. The critical 
exponents 711 and ql are defined via the asymptotic relations G(r, z ,  2') - rz-d-'ll as 
r + CO with z and z'  fixed, and G(r, z,  2') - z2-d-"L with r and t' fixed. When A- '  = 0 
these exponents are normally written as 7Sp and 7sIp. The exponents y1 and yll  (and 
similarly 7;' and y?? ) characterise the asymptotic behaviour-at the ordinary (or 
special) transition temperature-of the response of the magnetisation on the surface to 
a magnetic field change in the bulk, and to a magnetic field change on the surface, 
respectively. In terms of the correlation functions, we have 

G(r, 0,O) - t-"" (1.1) 

t A preliminary account of these results appeared in Reeve and Guttmann (1980) and Reeve (1981). 
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and 

C G(r, 0, 2 ' )  - t-" 
r,z' 

while the bulk exponent y is given by 

lim C G(r, 2, 2 ' )  - t-' 
Z ' O o  r,z' 

where t = 11 - T/ T,/ is the usual reduced temperature. 
Our interest in this problem stems largely from the work of Bray and Moore 

(1977a, b), who proposed the relation y l l  = v - 1, where v is the usual bulk correlation 
length exponent. Their proposal followed from a perturbation expansion, which was 
claimed to be exact to all orders, and was summed. This conjecture agrees with all 
known exact results but is in apparent conflict with certain series expansion results. The 
exact results include mean-field exponents, the two-dimensional Ising model, the 
434, O ( n )  model to order E and in the n = 03 limit. Most notably, Barber et a1 (1978) 
found from series studies that for the self-avoiding walk model (the n = 0 realisation of 
the n-vector model) in two dimensions yl l  = - 0 . 1 9 ~ ~ : ~ ~ ,  while v - 1 = -0.25, and in 
three dimensions yll  = -0.35 rt 0.05, which is only just consistent with the series-based 
estimate v - 1 = -0.4. The validity of the technique which produced the observed 
discrepancy in the d = 2 case was confirmed by Enting and Guttmann (1980), who 
applied an identical method of analysis, mutatis mutandis, to the two-dimensional Ising 
model, and found that the series analysis yielded a value for yl l  in agreement with that 
of U - 1 .  

For the three-dimensional Ising model ( n  = l), Whittington et a1 (1980) estimated 
yll = -0.33 * 0.04, which again is just in agreement with the series estimate v - 1 = 
-0.362-0.002. For the percolation problem, which of course is not describable within 
the framework of 44 field theory, but for which Bray and Moore's relation should still 
be valid, De'Bell and Essam (1981) obtained series estimates of yl l  and v which quite 
clearly violated the proposed relation. Their results held for both bond and site 
percolation on the three-dimensional FCC lattice. In two dimensions v > 1, so that the 
surface transition does not exist, and hence the relation is not expected to hold. In 
addition, they considered the two-dimensional SAW model on a different lattice from 
that considered by Barber et a1 and confirmed the breakdown reported earlier. 

In this paper we report calculations to second order in E = 4 - d of 7711, 77i, 77r and 
77y. The correlation function scaling relations 

+0.001 

Y11 = v ( 1 -  7711) (1.4) 

of Binder and Hohenberg (1972,1974) are then used to calculate y1 and yl l .  As shown 
explicitly by Diehl and Dietrich (1981), the relations (1.4) and (1.5) and the surface 
scaling relation 

2 Y l - Y 1 l = Y + ~  (1.6) 

(Barber 1973), as well as the analogous expressions for the special transition, are 
intrinsic to the renormalisation group method we have used. 
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Other recent work on this problem includes a thorough investigation of the scaling 
theory by Burkhardt and Eisenriegler (1980), and several position-space renor- 
malisation group calculations (ivrakiC and Wortis 1977, Burkhardt and Eisenriegler 
1977, 1978). Unfortunately, those calculations do not allow us to comment on the 
validity of the proposed relations yll = v - 1. 

The organisation of the remainder of this paper is as follows: the next two sections 
specify the model under consideration, and outline the general renormalisation group 
procedure. Sections 4 and 5 give details of the calculation for the ordinary and special 
transitions respectively. In 5 6 we briefly discuss the logarithmic corrections to the 
susceptibility exponents y1 and yll  that arise in the four-dimensional semi-infinite 44 
model with O ( n )  symmetry, and take the opportunity to correct certain erroneous 
results contained in Guttmann and Reeve (1980). Section 7 comprises a brief summary. 

2. The model 

The pioneering work on the renormalisation group approach to semi-infinite #4,  O(n) 
systems was carried out by Lubensky and Rubin (1975a, b). The Hamiltonian they used 
is H = Ho + H1, where 

The S ( X )  are the n-dimensional spin vectors at site X of a d-dimensional hypercubic 
lattice, while the factor As allows for a different spin interaction strength on the surface 
than in the bulk (if required). The d-dimensional lattice vector S = (811, S,) ,  with 811 the 
(d - 1)-dimensional component parallel to the surface and SI the remaining component 
perpendicular to the surface. 

The Fourier expansion functions used to diagonalise Ho are given by 

+ q ( ~ )  = J5 eiP.’ sin(kt + 41, (2.3) 

where q = ( p ,  k), p being a (d - 1)-dimensional vector and k a scalar, tan 4 = 
(sin k)/(cos k -As  x611 cos p * all), and the surface is located at t = 0. The total Hamil- 
tonian transformed to the momentum representation can be written 

where vq = ( - p ,  k). 
For the ordinary transition, at the point A = 1 corresponding to AS = 0, we have 

while for the special transition 
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and in that case ( 2 . 3 )  reduces to 

$,(x) = Jz eiP.’ cos(kz) sgn(k) 

since in this case tan q5 - -A sin k, hence q5 = t7 r  sgn(k). 

(2.7) 

3. Renormalisation group procedure 

The renormalisation method we have used is the principle of minimal subtraction of the 
divergent cut-off dependent terms from the Green functions, as outlined by Amit 
(1978) for the isotropic, infinite case. We begin by calculating the two-point momen- 
tum-space Green functions G,(kl, k 2 )  to second order in the coupling constant and 
evaluating diagrams within the framework of dimensional regularisation. The finite 
quantity G,” (kl, k 2 )  is found by minimal subtraction of poles in E from G,(kl, k2). The 
two quantities are related by G,(kl, k 2 )  = ZGF(kl, k 2 )  where 21’2 is the wavefunction 
renormalisation factor. Since all the poles in E contained in 2 originate only from the 
momentum conserving or ‘bulk’ term in G,(kl, k2), the diagonal part of Gp(kl ,  k 2 ) ,  
which is proportional to [S(ql - q2) -6(q l  + q 2 ) ] ,  obeys the usual renormalisation 
group equations. Consequently, and because the mass and coupling constant renor- 
malisation functions remain exactly as for the bulk system (as becomes clear when they 
are explicitly calculated, as discussed above (4.5)), the bulk exponents can be calculated 
in the usual way (Amit 1978). The renormalised coupling constant and its fixed point 
value can therefore be taken from the calculation for the infinite system, and we have 
gleaned these quantities directly from Amit (1978) after suitably matching conventions. 
The next step is to calculate the inverse Fourier transform of GF(kl, k2) ,  to give 
G,”(zl, z2 )  in the mixed space, and subtracting off any divergent cut-off dependence 
which occurs in the inversion to make G,” ( z l , z 2 )  finite. The procedure is rigorously 
justified in Diehl and Dietrich (1980, 1981). The decay of the correlations of spins in 
the boundary surface is assumed to behave like G: (0,O) - P - ~ + ‘ I I ,  while the asymptotic 
form of the bulk-spin-surface-spin correlations is assumed to be GF (0, t2 + a) - 
P-2+TL as p -+ 0. This last relation is of lesser utility than calculating X l z 2 z o  GF(0, zz) ,  as 
the sum can be performed prior to taking the Fourier transform and has the same 
asymptotic form as GF(0, t2-+a). The critical exponents are then identified by 
exponentiation. Diagrammatically the bare Green function is 

n 

+=+.., 
which is explicitly 

where G:(kl,  k 2 )  is the bare propagator and the 
integrals corresponding to each diagram above. 

(3.1) 

capitals represent the values of the 
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4. The ordinary transition 

The propagator for this system is G i ( k 1 ,  k2) = [ S ( q l -  vq2) - S(q1+ q2)]/2q: and the 
contribution of each diagram up to two loops is given below. 

( 1  - E  In 2)(la+l- la-I- E / ( + + /  ln(a+I + ~1a-I lnlv-]), (4.1) 

(4.3) 

where S = [6(q l  - vq2) -6(ql  + q 2 ) ] / 2 ,  S'  = S ( p l  + p 2 ) ,  g' = 2 ~ ~ - " ~ g , / r ( 2  - ~ / 2 )  and 

Putting these values into the sum (3.1) and subtracting the poles in E with residue 
proportional to S arising in B gives a finite quantity G F ( k l ,  k 2 ) .  In table 1 we list all the 
Fourier transforms needed to extract the low-momentum behaviour from G," (k l ,  k 2 )  
for both G,"(O, 0) and Z z 2  GF(0, z2 ) .  The method of obtaining these transforms is 
outlined by example in the Appendix. 

U+ = (kif k2)/2.  

Table 1. Fourier transforms needed to recover the low-momentum behaviour of GF(0, 0) 
and X Z 2  G:(O,zz) from GF(k, ,  kz) for the ordinary transition. 

Function x q:q:/S' 

Y 
2 2  

U+ - U -  tan-' (-) 
P u+l+ lu-I 

-1 
- 4 + 4  In 2 + 4  In p 
0 
-2 In p 
8(ln p)(ln 2 - 1) 
16(ln p)(ln 2 - 1) 

4(ln 2) In p 

4 l n p  

1 
2 - 4  In 2 - 2  In p 
-2(ln 2)ln p 
2 In p 
4(ln p ) ( l  - 2 In 2) 
4(ln p ) ( l  - 3 In 2) 

-2(ln 2) In p 

-2 In p 
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Exponentiating GF(0,O) and Z,, GF (0, z2)  then gives 

n + 2  (n +2)(17n +76) 
n + 8  2(n + 7-11 = 2 - - E - E 

and 

n + 2  (n+2)(4n+17)  
ql=l-- E 

2(n +8) E - (n + 8)3 

which together with (1.4) and (1.5) give 

and 

1 n + 2  (n+2)(n2+31n+124)  
2 4 ( n + 8 ) & +  8(n + 8)3 

y11= --+- E .  

The bulk v value (for instance see Amit (1978)) is 

1 n + 2  (n+2) in2+23n+60)  
(4.9) 

Inspection shows that the relation yl1 = v - 1 is violated at second order in E .  The 
results (4.5) and (4.6) have been independently obtained by Diehl and Dietrich (1980). 
A further check is given by the consistency of our results with equation (1.6). 

In order to see the effect of these new terms in the E expansion for y1 and yl l ,  we 
show in table 2 the sums to order E and e 2  of y1 and yll ,  as well as the best series 
estimates when n = 0 and n = 1. In every case the O ( E ~ )  term has effected a substantial 
improvement over the sum to O(E),  and in three dimensions all sums to 0 ( c 2 )  are within 
3% of series calculations. 

Table 2. Sum to order E and E *  of y1 and y11, compared with the best series estimates for 
n = 0 and n = 1 in two and three dimensions. Values marked with an asterisk are exact. 
a Barber et al (1978), ' Enting and Guttmann (1980). 

n d Sum to O ( E )  Sum to O(E* )  Best series 
~~~ ~~ 

0 2 0.75 1.031 0.945" 
1 2 0.833 1.235 1.375* 
0 3 0.625 0.695 0.70" 
1 3 0.667 0.767 0.78' 

Y1 

0 2 -0.375 -0.133 -0.19' 
1 2 -0.333 -0.012 0% 

3 -0.438 -0.377 -0.35" 
1 3 -0.417 -0.336 -0.33b 

Y11 0 

5. The special transition 

In the special transition the system described by equations (2.4), (2.6) and (2.7) has 
propagator Gj(k1, k2)  = sgn(k~kz)[S(q~ - vq2) + 6 ( q l  +q2)]/2q:. The renormalisation 
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procedure is as described in § 3, and the relevant integrals in (3.1) become 

qlqzA = -$“S’’(l+iE)(l-& In 2)(Ia+I+la-l-~la+l l n ~ a + ~ - - & I a - ~  lnla-l), (5.1) 2 2  

where S”’=sgn(klk2)[S(q1 - vq2)+S(ql +q2)] /2  and S”=sgn(klk2)S(pl +p2) .  
The Fourier transforms needed to find the low-momentum behaviour of G,” (0,O) 

and Z,, GF (0, z 2 )  are given in table 3. Exponentiation of the Green functions allows 
the identification 

n + 2  5 ( n + 2 ) ( n - 4 )  
E 

2(n + 8)3 m =  - = E -  

and 

n + 2  ( n + 2 ) ( n - 7 )  
n + 8 & -  

E .  
(n  + 813 771= -- 

( 5 . 5 )  

Table 3. Fourier transforms needed to recover the low-momentum behaviour of GF(O, 0) 
and 2,, GF(0, z2 )  for the special transition. 

Function x q:q:/6” 

1 

0 

0 

-4 In 2 - 4  In p 

-8(ln 2) In p 

-16(ln 2) In p 

-4(ln 2) In p 

2 l n p  

1 

2(ln 2) In p 

0 

0 
2 l n p  
0 

0 

-2 In p 
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These results have been independently verified (Diehl and Dietrich, private com- 
munication) and are consistent with the surface scaling relation (1.6). 

Unfortunately, series expansion results at the special transition are marred by 
cross-over effects (Binder and Hohenberg 1974) and so a direct comparison is inap- 
propriate. 

6 .  Exponents in four dimensions 

In an earlier paper (Guttmann and Reeve 1980), we obtained expressions for the 
susceptibilities x1 and xI1 for the case of space dimensionality equal to four. As pointed 
out by Diehl and Dietrich (1981), our results are incorrect because additional 
singularities in the renormalised Green function arise when z/[-the distance from the 
surface scaled by the correlation length-vanishes. 

With this correction, our results become 

(6.1) x l ( t )  - ~ ~ - 1 / 2 l l ~  t l i n + 2 ) l i n + 8 )  

This result can be confir:ned by an alternative derivation parallelling that given by 
Essam et a1 (1978) for percolation at the critical dimension. From the results of 
Rudnick and Nelson (1976), it follows that near d = 4 we can write 

and 

(6.4) 

where -yl(e) and y l l (&)  are given by (4.7) and (4.8) respectively. The exponent Al is the 
usual correction-to-scaling exponent defined through 

(6.5) x1 - t - Y 1 ( E )  + a t - Y 1 ( E ) f E A 1  

and 

(6.6) - t - ~ l i ~ )  + b r - Y l I ( E ) + f A l  
x11 

Comparing (6 .5)  and (6.6) with (8.6) of BrCzin et a1 (1976) yields A1 = 4. Now since 
x1 - t-1/2 and xI1 - tl/’ for E < 0, (6.3) and (6.4) yield 8,‘ = y ;  (0) /Al  = 2yi (0) and 
8,,, = 2y;, (0). Letting E + 0’ in (6.3) and (6.4) then gives XI  - t-1/2/ln tl’~1 and 
xll - t1/*11n tl’yll. From (4.7) and (4.8) we therefore obtain the results for 8,, and eYl, 
given in (6.1) and (6.2). 

Given this correction, the amplitudes quoted in our earlier paper also require 
modification. The corrected results are, for the case ~t = 0, 

kTxl (v ) /m2 - 2.2(1- v/uc)-l”~ln(l - V / U , ) / ~ / ~  

and 
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7. Summary 

Using renormalised perturbation theory, expansions in powers of E to order E’ have 
been presented for the correlation function exponents q and T~ of a semi-infinite d4, 
O ( n )  system. Both the ordinary and special transitions have been considered. For the 
ordinary transition the results do not agree with the relation yl l  = v - 1 of Bray and 
Moore, while comparisons with series expansion results show good agreement. 
Recently Burkhardt and Eisenriegler (1980) have studied the phase diagram and 
renormalisation group flow properties for a more general model that includes the 
system studied here, and have elucidated the exponent relations which must hold if the 
relation yl l  = v - 1 is to be correct-notably that the singularity a?” characterising the 
dominant behaviour of the thermal singularity of the semi-infinite free energy density, 

, must be equal to the bulk specific heat exponent a. Our results, for both the 
ordinary and special transition, have been confirmed by Diehl and Dietrich (1980,1981 
and private communication). 

t l-a;= 
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Appendix. A calculation of one of the Fourier transforms of table 1 

The inverse Fourier transform of the function S(pl +p2)(1u+1 - lu-l)/q;q; for the 
ordinary case when z1 = z2 = 0 is, after manipulating the region of integration, 

We can in this case (and some others) perform this integral with A = Co. However, this is 
not always the case, and so we elect to keep A finite and take only the leading terms in 
the sin kl functions to extract the low-pl behaviour. Any A-dependent parts are 
subsequently discarded, as the result must be independent of A. So we require 

- (2/x)pl(-1 +In 2 +In pl) for small pl. 
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